首页> 外文OA文献 >A genetic tuning to improve the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets: degree of ignorance and lateral position
【2h】

A genetic tuning to improve the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets: degree of ignorance and lateral position

机译:遗传调整以提高基于模糊规则的分类系统的性能,该分类系统具有区间值模糊集:无知度和横向位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fuzzy Rule-Based Systems are appropriate tools to deal with classification problems due to their good properties. However, they can suffer a lack of system accuracy as a result of the uncertainty inherent in the definition of the membership functions and the limitation of the homogeneous distribution of the linguistic labels. The aim of the paper is to improve the performance of Fuzzy Rule-Based Classification Systems by means of the Theory of Interval-Valued Fuzzy Sets and a post-processing genetic tuning step. In order to build the Interval-Valued Fuzzy Sets we define a new function called weak ignorance for modeling the uncertainty associated with the definition of the membership functions. Next, we adapt the fuzzy partitions to the problem in an optimal way through a cooperative evolutionary tuning in which we handle both the degree of ignorance and the lateral position (based on the 2-tuples fuzzy linguistic representation) of the linguistic labels. The experimental study is carried out over a large collection of data-sets and it is supported by a statistical analysis. Our results show empirically that the use of our methodology outperforms the initial Fuzzy-Rule Based Classification System. The application of our cooperative tuning enhances the results provided by the use of the isolated tuning approaches and also improves the behavior of the genetic tuning based on the 3-tuples fuzzy linguistic representation.
机译:基于模糊规则的系统由于其良好的性能而成为处理分类问题的合适工具。但是,由于隶属函数的定义固有的不确定性以及语言标签的均匀分布的限制,它们可能会缺乏系统精度。本文的目的是通过区间值模糊集理论和后处理遗传调整步骤来提高基于模糊规则的分类系统的性能。为了构建区间值模糊集,我们定义了一个称为弱无知的新函数,用于对与隶属函数定义相关的不确定性进行建模。接下来,我们通过合作进化调整以最佳方式使模糊分区适应问题,其中我们同时处理了语言标签的无知程度和横向位置(基于2元组模糊语言表示)。实验研究是在大量数据集上进行的,并得到了统计分析的支持。我们的结果从经验上表明,使用我们的方法要优于最初的基于模糊规则的分类系统。我们的合作调优的应用增强了使用孤立调优方法提供的结果,并且还改善了基于三元组模糊语言表示的遗传调优的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号